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We studied the brightness induced from complex non-figural achromatic surrounds. A spatially
uniform test field was surrounded by a random texture composed of two sets of dots. The luminance
of each set of dots was modulated sinusoidally at 0.5 Hz. The mean luminance, phase and amplitude
of modulation of each set were controlled independently so as to modulate the luminance and/or the
contrast of the surround. Brightness induction was measured by a modulation nulling technique.
The results were fit by a model in which the total brightness induced by a surround is equal to a
weighted spatial summation of the induced effects from each point in the surround. The model
incorporates local luminance gain controls in the test and surround fields and assumes that the
magnitude of induction from each surround element is gain controlled by the difference between
the mean luminance of the test and the individual surround elements. Copyright © 1996 Elsevier

Science Ltd.

Brightness induction ~ Spatial integration

Simultaneous contrast

Lateral interactions  Gain control

INTRODUCTION

The perceived brightness of a spatially uniform achro-
matic test field of constant luminance can be increased or
decreased in a straightforward manner by respectively
decreasing or increasing the luminance of the area
surrounding the test: classical brightness induction
(Chevreul, 1839). If the luminance of the surround is
modulated sinusoidally in time at a moderate frequency
(around 1 Hz), the perceived brightness of the test
modulates in opposite phase, and the induced effect can
be measured by nulling with real luminance modulation
inside the test field (Krauskopf et al., 1986; Zaidi et al.,
1991), or by asymmetric matching (De Valois et al.,
1986). In the case of spatially uniform surrounds, within
the luminance range provided by CRT monitors, the
inducing and nulling modulations are related in a linear
fashion (Krauskopf et al., 1986).

When the surround is not spatially uniform, brightness
induction can be more complicated. Some studies have
shown that a spatially uniform surround and a spatially
complex surround of the same space-averaged luminance
have identical inducing effects on a central test (Valberg
& Lange-Malecki, 1990). Zaidi et al. (1992) and Zaidi &
Zipser (1993) examined spatially complex surrounds in
terms of basis functions consisting of radially and
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concentrically varying spatial sinusoids. Experiments
using individual and combined basis surrounds showed
that brightness induction can be characterized as a linear
spatial integration process in which the effects of parts of
the surround at different distances from the test are
weighted by a negative exponential as a function of
distance from the test. Their data are consistent with the
assumption that the total induced effect of the surround is
simply the sum of the induced effects of individual
surrounding points.

A number of other studies, however, have demon-
strated failures of additivity of surround effects in
brightness induction. In these studies, more complex
attributes such as shape, transparency, or depth could be
inferred in some of the stimuli used, and it is not clear
whether the observed failures of additivity are due to
spatial variations per se or to some higher cognitive
mechanisms (e.g. Judd, 1966; Gilchrist, 1980; Zaidi,
1990; Adelson, 1990; Spehar et al., 1995). There are also
a few studies that used spatially variegated but non-
figural surrounds and reported inducing effects that are
more complex than could be explained by spatial
additivity (Brown & MacLeod, 1991; Schirillo &
Shevell, 1993). Zaidi et al. (1992) and Zaidi & Zipser
(1993) had tried to isolate the properties of lateral
combination processes by keeping the time and space-
averaged mean luminance of all points in the stimulus
equal. In the series of studies which exhibited a failure of
additivity this was not true, thus making it imperative to
explicitly consider spatially local and extended adapta-
tion mechanisms.

The purpose of this study was to generate a general
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FIGURE 1. Stimulus configuration: spatially uniform 1 deg disk was surrounded by 9.5 deg annulus composed of binary random
texture.

model for brightness induction from such variegated non-
figural surrounds, to identify the conditions under which
the induced effect can be described as spatially additive,
‘and to delineate the processes that lead to failures of

additivity. We present the results of four experiments that -

require progressively more complex qualitative explana-
tions. We then present a quantitative model that accounts
for these results.

"EXPERIMENT 1. SPATIAL ADDITIVITY OF INDUCED
EFFECTS FOR SURROUNDS AND TESTS AT EQUAL
MEAN LUMINANCE

The purpose of this experiment was to extend the tests

for spatial additivity done by Zaidi et al. (1992) and Zaidi
& Zipser (1993). Zaidi et al. (1992) had shown linear
spatial summation of brightness induction for surrounds
consisting of concentric circles of uniform luminance
which varied sinusoidally with increasing distance from
the test. Using radially varying surrounds, Zaidi & Zipser
(1993) extended this result to the case of radially varying
surrounds, where the test was surrounded by areas
varying in luminance, but only examined the case where
the total induced effect was zero.

In Experiment 1 we used stimuli similar to Fig. 1, in
which a foveally fixated spatially uniform disk was
surrounded by an annulus filled with binary random
texture, composed of equal numbers of two sets of
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FIGURE 2. The luminance modulation of each set of the surround elements in Experiment 1. The luminance of both sets of

texture elements was modulated sinusoidally at 0.5 Hz. The luminance modulation of one set was set at an amplitude of 0, 0.2,

0.4, 0.6, 0.8 or 1.0, paired with a modulation amplitude of the other set at 1.0, 0.5, 0, —0.5, —1.0, where a negative sign denotes
modulation in the opposite phase.

randomly intermixed, equal sized, square elements. The
luminance of each set of elements was modulated
sinusoidally in time. The mean level, amplitude and
phase of temporal modulation were independently
controlled for each set. Temporal modulation of the
luminance of the surround resulted in an induced
modulation of the brightness of the test. The induced
modulation was nulled by adding real luminance
modulation inside the test field, and the amplitude of
the nulling modulation was used as the measure of the
induced effect.

In Experiment 1, the test and both surround sets had the
same time-averaged mean luminance. We aimed to test
whether the total induced effect was simply a sum of the
effects induced by the modulation of each set separately,
by varying the modulations of each of the sets
independently over a wide range.

Methods

Stimulus parameters. The test was a spatially uniform
achromatic disk (CIE chromaticity coordinates: X =
0.311, Y=0.335) with a diameter subtending a visual
angle of 1 deg, surrounded by a 9.5 deg annulus filled
with achromatic random texture composed of two sets of
elements. Each element was a square, 6 pixels wide on
each side (equal to a visual angle of 0.1 deg). CRT

monitors exhibit high spatial frequency non-linearities
for small element sizes. The size of the elements was
chosen to avoid these nonlinearities. . There were
approximately equal numbers of elements of the two
sets along each concentric circle and radius of the
surround. The time-average luminance of all the points in
the test and the surround was 25 cd/m?® The circular
surround was enclosed within an achromatic, spatially
uniform, steady, 10.67 x 10 deg rectangle whose mean
luminance was also 25 cd/m?.

For convenience, we normalized all luminance values
by dividing by the screen mean luminance level, yielding
a relative luminance scale ranging from O (dark) to 2
(maximum screen luminance of 50 cd/m?). In all
experiments, the amplitude of modulation was defined
as Lmax - Lmean-

In Experiment 1 we measured the total induction on the
test when the luminance of both sets of texture elements
was modulated sinusoidally at 0.5 Hz. The luminance
modulation amplitudes of one set were 0.0, 0.2, 0.4, 0.6,
0.8 or 1.0, paired with modulation amplitudes of the other
set of 1.0, 0.5, 0.0, —0.5, —1.0, where a positive or
negative amplitude denotes modulation in phase or 180
deg out of phase with the paired modulation. One cycle of
each of these combinations of luminance modulations are
shown schematically in Fig. 2.
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FIGURE 3. Results of observers JS and BS in Experiment 1. Test mean luminance equals 1.0. The amplitude of nulling

modulation (ordinate) is plotted as a function of the magnitude of the modulation of one set of the surround elements (abscissa)

with the amplitude of modulation of the paired set as a curve parameter: (1, —1.0; &, —0.5; O, 0; A, 0.5; B, 1). Each data

point is the average of two 2AFC staircases (10 turns each). Error bars representing standard error of the mean were smaller than

the symbols. The solid lines are given by equation (1) where m, is the slope of the best fitting line in Fig. 4 calculated separately
for each observer.
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FIGURE 4. Results of Experiment 1 for observers JS and BS. The amplitude of nulling modulation (ordinate) is plotted as a
function of the average magnitude of the modulation of the two sets of surround elements (abscissa). Solid lines show the best
regression fit to the data sets, passing through the origin.

Measurement procedure. A 2AFC modification of the
modulation nulling technique discussed by Krauskopf et
al. (1986) and Zaidi et al. (1991, 1992), was used to
measure the amount of induction within the central test.
When the surround components were modulated at 0.5
Hz, a perceived modulation was induced in the test. To
null the induced modulation, a real modulation was added
to the test. During each trial, the observer fixated on the
center of the test.

For each condition we initialized two 2AFC staircases,
one above and one below the approximate null, found by.
allowing the observer to freely adjust the nulling
modulation to minimize the perceived modulation in
the test. Different tones were presented in coincidence
with the positive and negative peaks of each sinusoidal
cycle. The observer’s task was to compare the test
appearances at the two tones, and to respond whether the
brightness of the test at the second tone was lighter or
darker than its appearance at the first tone by pressing the
appropriate buttons. From this response it was deter-

mined whether the nulling modulation was stronger or
weaker than the induced modulation. When the ob-
server’s response indicated that the nulling modulation
was stronger (or weaker) than the induced modulation,
nulling modulation was reduced (or increased) by a fixed
step of 12%. A turn in the staircase occurred when the
observer’s response indicated that the nulling modulation
had changed from weaker to stronger than the nulling
modulation (or vice versa). Each of these turns is a
measurement of the observer’s required nulling modula-
tion, and the staircases continued until 10 such turns had
been accumulated. To ensure the reliability of the
measurements, we extracted several statistics. By exam-
ining the standard deviation we confirmed that each
staircase converged; and by examining the z-test for the
means, and F-ratio for the variances of the two staircases,
we confirmed that they converged on the same value,
despite having been initialized at different points. During
each session the observer was presented with randomly
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interleaved conditions to ensure that no adaptation to a
particular surround modulation would occur.

Equipment and stimulus generation. Stimuli were
displayed on the screen of a BARCO 7651 color monitor
with a refresh rate of 100 non-interlaced frames/sec.
Images were generated using a Cambridge Research
Systems Video Stimulus Generator (CRS VSG2/2),
running in a 90 MHz Pentium based system. The
VSG2/2, through the use of 12-bit DACs, is able to
generate 2861 linear gray levels after gamma correction.
By cycling though pre-computed look up tables (LUT)
we were able to update the entire display each frame. All
stimulus presentation, data collection, and the 2AFC
staircase procedure were completely computer con-
trolled.

Observers. One of the authors (BS) and another
psychophysically experienced observer (JS) participated
in all experiments. Both observers were corrected to
normal for refractive errors.

Results

The main purpose of this experiment was to describe
the function that relates the magnitude of induced
modulation in the test to the amplitudes of modulation
of the two sets of surround elements. The results are
shown in Fig. 3. The amplitude of nulling modulation is
plotted as a function of the amplitude of the modulation
of one set with the amplitude of modulation of the other
set as a curve parameter. For each modulation level of
one set, the magnitude of nulling modulation was a linear
function of the amplitude of the paired set. In addition,
the five curves for each observer are parallel and equally
spaced, indicating that the amplitude of nulling modula-
tion is a linear function of the amplitude of each of the
surround sets.

Simple additivity of the induced effects from the
surround is also easily verified in Fig. 4. where the
magnitude of the nulling modulation is shown as a
function of the average modulation amplitude of the
luminance of the two surround components. The best
fitting line is shown for each observer. The R®s were
0.994 and 0.993 for JS and BS, respectively, and the
slopes were 0.874 and 0.766.

The data for each observer in Fig. 3 were fitted with the
parallel lines given by the equation:

mo(Al +A2)/2 (1)
where m,, is a constant for each observer equal to the
slope estimated in Fig. 4, and A; and A, are the
modulation amplitudes of the two surround sets. The
straight lines derived from equation (1) provide a good fit
to all the slopes and spacing of the data in Fig. 3.

In Experiment 1, the method of independently
controlled luminances of the two surround components
leads to a variation of the space-averaged luminance and
contrast in the surround. These results unambiguously
support a spatial summation model over more general
conditions than those examined by Zaidi et al. (1992) and
Zaidi & Zipser (1993).
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EXPERIMENT 2. SPATIAL ADDITIVITY OF INDUCED
EFFECTS FOR SURROUNDS AND TESTS AT
DIFFERENT MEAN LUMINANCE

By using stimuli in which all points in the test and the
surround have the same time and space-averaged mean
luminance level, the results of both Zaidi et al. (1992) and
of Experiment 1 isolate lateral effects from other factors
like variations in local adaptation level. Some of the
claims for the failure of additivity have been made on the
basis of experiments where the test and the complex
surround were at different mean luminance levels. In
Experiment 2 our purpose was to test spatial additivity of
the inducing effects when the mean luminance level of
the test differs from that of the surround.

The same equipment, surround stimuli and procedures
were used as in Experiment 1. The time-averaged
luminance of the surround was 25 cd/m?, the time-
averaged luminance of the test disk was set at either 0.5
or 1.5 times this value. Expressed in the relative
luminance scale, the surround mean was 1.0 whereas
the test values were 0.5 and 1.5.

Results

Figures 5 and 6 show the results of two observers for
the conditions in which the time-averaged test luminance
level was 0.5 and 1.5, respectively. The amplitude of
nulling modulation is plotted as a function of the
magnitude of the modulation of one set of the surround
components, with the amplitude of modulation of the
other set as a curve parameter. The results show that the
magnitude of nulling modulation is a linear function of
the modulation level of the surround components for tests
at both luminance levels.

A comparison between Figures 5 and 6 shows that the
amount of required nulling modulation increases as the
mean luminance of the test increases. This is clearly
reflected in the slopes of the best fitting lines in Fig. 7,
where the magnitude of the nulling modulation is shown
as a function of the average modulation amplitude of the
two surround sets for each of the test mean levels. The
slope of the linear relation increases with the mean
luminance level of the test. The slopes for the tests of
mean luminance levels of 0.5, or 1.5 are 0.406 and 0.919,
respectively, for observer JS, and 0.465 and 0.890 for
observer BS. R*s were 0.993 and 0.996 for observer JS
and 0.995 and 0.998 for observer BS. Results obtained in
Experiment 1 (Fig. 4) can also be included in this
comparison: the slope for the test of mean luminance
level of 1.0 was (0.874 for observer JS and 0.766 for
observer BS.

Figures 5 and 6 show the straight lines derived from
equation (1) with m, set to the corresponding slopes
derived from Fig. 7. The lines reproduce the spacing and
slopes of the data.

From the paraliel and equally spaced straight lines in
Figs 5 and 6 we can conclude that the inducing effects
from individual surround components are combined in a
simple additive fashion. However, tests with different
mean luminance levels differ in required magnitudes of
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FIGURE . Results of Experiment 2 for observers JS and BS. Test mean luminance equals 0.5. The same graphical conventions
are used as in Fig. 3.
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FIGURE 6. Results of Experiment 2 for observers JS and BS. Test mean luminance equals 1.5. All graphical conventions are
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FIGURE 7. Results of Experiment 2 for observers JS and BS. The amplitude of nulling modulation (ordinate) is plotted as a

function of the average magnitude of the modulation of the two sets of surround elements (abscissa) for two different test levels.

Triangles represent data points for the test with mean luminance equal to 0.5. Circles represent data points for the test with
luminance level equal to 1.5. All graphical conventions are identical to those in Fig. 4.

nulling modulation. It is important to note that in Figs 3-7  induced modulation. It is well established (e.g., Watson,
we have plotted the empirically measured nulling 1986) that the threshold for detection of temporal
modulation amplitude, and not the amplitude of the modulation at 0.5 Hz is an increasing function of the
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FIGURE 8. The luminance modulation of each set of the surround

elements in time (sinusoidal modulation with frequency of 0.5 Hz) in

Experiment 3. The two surround components were modulated with

equal amplitudes in counterphase around different mean luminance

levels. As a result, the space-averaged luminance of the surround was

constant while the spatial contrast was modulated with amplitudes of
0.5 (left panel) or 1.0 (right panet).

mean luminance of the field. Craik (1938) conceptualized
this fact in terms of a gain factor for the test modulation,
set by the test mean luminance. In Experiments 1 and 2,
even if the brightness induced from the surround were
independent of the luminance level of the test, because of
the gain set by the mean luminance of the test, the amount
of real modulation needed to null the induced modulation
should increase as a function of the test mean. The results
of these experiments imply that local adaptation
mechanisms in the test field should be incorporated into
a general model of brightness induction.

EXPERIMENT 3. BRIGHTNESS INDUCTION FROM
CONTRAST MODULATED SURROUNDS WITH
CONSTANT SPACE-AVERAGED LUMINANCE

The results of Experiments 1 and 2 are consistent with
additivity of the induced effects, resulting from time-
varying changes in surround luminance. If the luminance
of the surround set is modulated so that the spatially
summed luminance along all circles concentric with the
test, is constant at all instants of time, while only the
spatial contrast between the two sets is varied, the spatial
additivity model predicts zero brightness induction.
However, some studies that compared the effects of
textured or checkerboard surrounds to uniform surrounds
of the same mean luminance at different levels of spatial
contrast, have suggested that the space-average lumi-
nance of a non-uniform surround is not sufficient to
predict the perceived brightness of a test patch (Brown &
MacLeod, 1991; Schirillo & Shevell, 1993).

In Experiment 3 we used the same spatial configuration
as Experiments 1 and 2 to examine whether modulation
in spatial contrast of the surround could produce bright-
ness induction in the test. This was achieved by
modulating the luminances of the two surround compo-
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nents sinusoidally at 0.5 Hz, with equal amplitudes, in
opposite phase, around different mean luminance levels,
as depicted in Fig. 8.

At every time ¢, the Michelson contrast within the
surround was defined as: [L(%max-L(®minl/[L(®)max+
L(t)min]. Two different contrast modulation amplitudes
were examined: 0.5 where the contrast of the surround
varied sinusoidally in time from 0.25 to 0.75, and 1.0
where the contrast of the surround varied sinusoidally in
time from 0 to 1. The space-averaged mean luminance of
the surround was 1.0 (25 cd/m?). Three mean luminance
levels of the test were used: 0.5, 1.0, and 1.5 (12.5, 25,
and 37.5 cd/m?, respectively).

Results

Data for the two observers are shown in Fig. 9. The
magnitude of nulling modulation is plotted as a function
of the amplitude of contrast modulation. The three sets of
symbols in each graph represent the data for the tests at
the three different mean luminance levels. The symbols
are connected by lines, extrapolated to the zero point, for
the purpose of graphical clarity. The data of the two
observers are similar. Contrast modulation of the
surround does not produce any significant brightness
induction for tests at the same mean luminance level as
the surround (middle points). For tests at the other two
mean Juminance levels, the magnitude of the nulling
modulation increases with the amplitude of the contrast
modulation. The amplitude of nulling modulation
required is small, but significantly greater than zero at
both levels of contrast modulation (P < 0.01). The results
for test luminance levels at 0.5 and 1.5 show nulling
modulation of approximately equal amplitude but
opposite sign. The brightness: induced into the test at
mean luminance 0.5, was in the same phase as the
contrast modulation of the surround, whereas the bright-
ness induced into the test at 1.5 was in the opposite phase.
Phenomenally, this can be described in the following
way: the test at mean luminance of 0.5 appears lighter on
the higher contrast surround and darker on the lower
contrast surround; the opposite happens for the test at
mean luminance of 0.5.

The change in sign of the required nulling modulation
as a function of test mean level, indicates that brightness
induction is not a function of contrast modulation per se,
and the results are better understood if the inducing
effects of the two sets of surround elements are
considered separately. A positive sign indicates that the
nulling modulation was in the same phase as the
modulation of the surround set with the higher mean
luminance level in Fig. 8, and a negative sign indicates
that the nulling modulation was in phase with a surround
set of the lower mean luminance. The surround set whose
mean luminance is closer to the mean level of the test
seems to have a greater inducing effect. Mathematically,
this is equivalent to the induced modulation being gain
controlled by a decreasing function of the difference
between the mean luminance level of the test and each set
of the surround elements. In the case where the test level
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is equidistant from the mean levels of the two surround
sets, the induced effects cancel out and there is roughly
zero induced modulation.

More generally these results suggest that the magni-
tude of the difference between the luminance level of the
test and the mean luminance level of each surround
element should be considered in modeling the total
induced effect from complex surrounds. We therefore
postulate that there are pair-wise lateral connections
between points in the test and the surround, and that the
magnitude of the induction signal between them is a
decreasing function of the mean luminance difference
between them. To be consistent with the linear results of
Experiments 1 and 2, the summation of induced effects
has to occur posterior to this spatially extended gain
control.

EXPERIMENT 4. INDUCED EFFECTS FROM
SPATIALLY UNIFORM SURROUNDS AND TESTS AT
DIFFERENT MEAN LUMINANCE LEVELS

In Experiments 1-3 we have shown the necessity of

incorporating local and extended gain controls in
induction models. If local gain controls function in the
test field under these conditions, it is probable that they
should also be active in the surround field. This would be
revealed by measuring induction from surrounds at
various mean levels. We did this in Experiment 4. In
addition we tested whether spatially uniform surrounds
had qualitatively different brightness induction effects
than textured surrounds, or whether they shared similar
mechanisms.

In Experiment 4 we used spatially uniform center and
surround stimuli of the same size as in the earlier
experiments. Three levels of the surround mean lumi-
nance (12.5, 25 and 37.5 cd/m) represented as 0.5, 1.0,
and 1.5 were paired with three levels of the test mean
luminance (also at 0.5, 1.0, and 1.5) for a total of nine
conditions. In all conditions, the luminance of the
surround was modulated sinusoidally in time at 0.5 Hz
with an amplitude of 0.5. The best nulling modulation
was estimated using the same 2AFC staircase procedure
as Experiments 1-3.
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Based on the results of Experiments 1-3, we expected
that the magnitude of the induced effect would vary as a
function of the difference between the test and surround
mean luminance levels, i.e., when the surround and the
test have the same mean luminance levels, the induced
effect should be higher than when they are at different
levels. In addition, we expected that as the surround mean
level increases, the same inducing amplitude should
produce less induction, through a mechanism similar to
the one that causes the real nulling modulation to become
less effective as the test mean level increases.

Results

Results for the two observers are plotted in Fig. 10. The
magnitude of nulling modulation is plotted as a function
of the surround mean luminance level with test
luminance level as a curve parameter. For all three test
levels, the magnitude of the nulling modulation was the
highest when the surround modulation was at the same
mean luminance as the test. The magnitude of the nulling
modulation decreased monotonically as a function of the
difference between the test and the surround mean
luminance levels. When the mean luminance levels of the
test and the surround were equal (i.e., the data points
indicated by solid symbols) the magnitude of nulling
modulation was approximately constant, indicating that
the local gain control set by the surround mean luminance
roughly balances the effect of the gain set by the test
mean. The effect of the gain set by the test mean
luminance is clearly evident in data for the surround
luminance level of 1.0 (the three points in the middle of
the abscissa), where the nulling modulation required for
the test of the lowest luminance level is considerably
lower than for the tests of higher luminance levels.

BRIGHTNESS INDUCTION MODEL

Zaidi et al. (1992) introduced a model of brightness
induction in which total induction was the result of a
spatially weighted summation of the individual induced
effects from each point in the surround. This model was
designed for the case in which the time-averaged mean
luminance of each point in the test and in the surround
was identical. To account for the results of this paper, we
have generalized this model so that the induced effect
from each point in the surround is proportional to its
luminance attenuated by two gain controls and a spatial
weighting function:

I(t) =

7 W(s) - Tp(,s) - Ts(,5) - L(Q, s, t)dsdQ
- Jo 2m

(2)

I(1) is the total induced effect on the test patch at time ¢.
(Q,s) are the polar coordinates of a surround point, where
Q is the angular direction in radians, and s the spatial
distance from the test in degrees of visual angle. L(€2,s,7)
is the luminance at that point at time ¢ I's(Q,s) and
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I'p(€2,s) are two gain control factors that affect the signals
from (Q,s). W(s) is a monotonically decreasing spatial
weighting function of s, that Zaidi er al. (1992) showed
can be well approximated by a negative exponential
function with two parameters, k and a:
W(s) = ke ®* (3)
We assume that the response of the visual system to a
luminance signal at every point is gain controlled by a
factor which depends solely on the mean luminance level
at that point. Such local adaptation mechanisms exist
early in the visual system (Shapley & Enroth-Cugell,
1985). Following tradition, we use hyperbolic gain
control functions in our model. For each point in the
surround, we calculate its gain factor by:

Vs
[5(9,s) =
() ¥s + [L(S s, 1)dt

(4)

where the parameter y is a constant for each observer. By
incorporating this gain control, the induction model is
able to predict that surround modulation about a low
mean luminance level generates more induction than
modulation of the same amplitude about a higher level.

We allow for the possibility that the local gain factor
for the centered test field could be different from the
surround gain. We calculate the factor, ', for the test by:

Ye
r.= 5
Ye + [L(0,0,¢)dt 5)

where [L(0,0,r)dt is the time-averaged luminance of the
center of the test and vy, is a constant parameter for each
observer.

The experimental results show that induced modula-
tion depends on the pair-wise differences between the
mean levels of the test and individual surround points.
We modeled this by attenuating the induction from each
point by a gain factor set by the absolute difference
between the time-averaged luminance at that point and
the time-averaged luminance of the test:

FD(Q,S) =

D (6)
o + |Ts(Q,s) - JL(Q, s, 8)dt — T - [L(0,0,¢)dt

where the parameter yp, is constant for each observer.

In the model presented by Zaidi et al. (1992), because
the test mean was the same for all conditions, it was
sufficient to assume that a real modulation in the test field
would null the induced modulation when it was of an
equal amplitude and in the opposite phase. For conditions
that include different mean levels, the local adaptation
mechanism operating on the test field will influence the
effectiveness of the added nulling modulation. Therefore,
the true null will be achieved when the real modulation,
after being gain controlled by the test mean level, is equal
and opposite to the induced modulation:

LeN(e) = —1(2) ()
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where N(7) is the luminance modulation required to
counteract the induction at time ¢. Thus the complete
expression for the null is:

N(@) =
1 27
e,
(8)

For the spatial and temporal configuration used in the
current experiments, the general model can be simplified.
Because the spatial composition of the binary texture in
the surround was a random distribution, it is sufficient to
consider the effects of identical numbers and distribution
of the two sets of surround elements, instead of
considering each surround point individually. Therefore,
instead of determining an observer’s spatial weighting
function, it is sufficient to estimate its aggregate effect on
each of the two types of surround elements. In addition,
the integrals in equation (8) can be replaced by the sum of
the independent effects of the two surround sets. Further
simplification can be achieved because of the nature of
the temporal modulation. The luminances of the two
surround components were always modulated sinusoid-
ally with the same frequency, either in phase or in the

5T W(s) - Tp(Qs) -27IT‘S(Q,S) -L(Q, s, t)az'sdQ
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opposite phase, the model predicts that the induced
modulation should also be sinusoidal with the same
frequency and in the opposite phase with either one or
both of the surround components. Therefore, for these
conditions, it is sufficient to describe the inducing and
nulling stimuli by just their signed amplitudes of
modulation instead of considering instants of the
modulating waveform.

As a result, for all conditions in the present study,
equation (8) can be simplified to predict the amplitude of
the required nulling modulation N by the equation:

2
w FD.-Ps.'Ai
N =— [ . B 9

where w incorporates the effect of the integrated spatial
weighting function over the surround; A; is the signed
amplitude of luminance modulation of the ith component,
and I'p, and I's, are the gain controls that apply to the set
i. This simplified model has only four free parameters: 7,
yp and yc, the three gain control constants, and w which
scales the amplitude of induction for each observer.
The entire set of an observer’s data was fit with
equation (9) by using the MATLAB ‘fmins’ function (a
standard simplex minimizing algorithm). The simulta-

Model Fits (Observer: JS)

Contrast Modulation Amplitude

Surround Mean Luminance

FIGURE 11. Best fitting predictions of the model shown with results of Experiments 14 for observer JS. All graphical
conventions are identical to those in corresponding experiments.

EXP2 EXP 1 EXP2
1 i 1
Test Level: 0.5 Test Level: 1 Test Level: 1.5
0.75+ 0.754 0.75~
0.5+ 0.5+ [] 0.5
= -] °
s 0 MM o o-
» M
E -0.254 -0.254 o -0.25+ =
-0.54 0.5+ -0.54
-0.75+ | -0.754 -0.75+1
-1 T T T ¥ T L] -1 1] i T T l T -1 1 I ) L} T T
0 0.2 04 06 0.8 1 0 02 04 0.6 0.8 1 0 0.2 04 06 0.8 1
Amplitude of Surround Component
EXP 3 EXP 4
1 1
0.754 0.75~
0.5+ 0.5+
% 0.25+ 'ﬁ- 0.25+
[o]
< o {25\2 :
o0 on
S 525 £ 0254
3 ]
4 z
-0.54 -0.5+
-0.75+ -0.754
B | T T -1 T T T
0 0.5 1 05 1 1.5




INDUCTION FROM UNIFORM AND COMPLEX SURROUNDS

1903

Model Fits (Observer: BS)
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FIGURE 12. Best fitting predictions of the model shown with results of Experiments 1-4 for observer BS. All graphical
conventions are identical to those in corresponding experiments.

TABLE 1. Parameter estimates for observers JS and BS

Observer w Vs 22 Yc
IS 0.4908 1.087 0.1929 1.016
BS 0.4079 7.403 0.5671 3.762

The four parameters of the model were optimized to simultaneously fit
all the data for each observer. Estimated parameters: w, scaling
parameter; s, local surround gain; yp, spatially extended
surround-test difference gain; yz, local test gain.

neous fits of this model to the data from Experiments 1-4
are shown in Fig. 11 for observer JS and in Fig. 12 for BS.
The values of the estimated parameters are presented in
Table 1.

Figures 11 and 12 show that the model’s predictions fit
the data for both observers extremely well. The fit to data
from Experiments 1 and 2 shows that at all fixed mean
fevels of test and surround, the model predicts a linear
relationship between the amplitude of the modulation of
the surround components and the nulling amplitude. It
also accounts for the changes in the nulling modulation
amplitude due to variations in the mean luminance level
of the test.

The fit to the results of Experiment 3 is reasonably

good. The model correctly predicts least brightness
induction from changes in the spatial contrast of the
surround when the test mean luminance level is equal to
the surround. The relative amplitude and phase of
brightness induction for tests whose mean luminance
levels were higher or lower than the surround mean were
also predicted by the model. However, the magnitude of
brightness induction is somewhat underestimated for
both observers.

The model’s fits to the brightness induction data for
different luminance levels of the uniform surround and
test (Experiment 4), are also quite good. For all three test
levels the model correctly predicts that the nulling
modulation should have the greatest magnitude when
the surround and text are at the same mean luminance.
The model also predicts the monotonic decrease in the
magnitude of the nulling modulation as the difference
between the test and the surround mean luminance level
increases.

It should be pointed out that the model can fit the data
from each experiment almost perfectly if the parameters
are estimated from just that set of data. We have required
the model to simultaneously fit data that was collected
over a 6 month period, with just a single set of
parameters. We have also not tried to optimize the form



1904

B. SPEHAR et al.

FIGURE 13. Brightness induction from random binary texture surrounds. The three vertical surround segments have equal

spatially averaged luminance, while the spatial contrast progressively decreases from left to right (1.0, 0.33 and 0.0). Centered in

each of the surround segments there are five spatially uniform diamonds with luminance decreasing from top to bottom.

Diamonds across each row are of identical luminance. The luminance of the diamonds in the middle row is equal to the mean
luminance of all the surround segments.

of the gain control function by adding extra parameters.
The quantitative details of the model are not as important
as the qualitative nature of the processes revealed by
fitting the model to this set of data.

DISCUSSION

The results of the present study show that if local and
spatially extended adaptation mechanisms are incorpo-
rated into a general model, brightness induction can be
characterized as a linear summation of the induced
effects of elements of complex surrounds. The present
model incorporates separate local luminance gain con-
trols in the test and the surround, and assumes that the
magnitude of induction is gain controlled by the
luminance difference between the test and each surround
element. The fits of the model suggest that there are no
fundamental differences between the mechanisms in-

volved in brightness induced by complex or uniform
surrounds.

There is a large amount of psychophysical and
physiological evidence for the spatially local gain
controls we have used (Chen er al., 1987; Shapley &
Enroth-Cugell, 1985). These adaptation mechanisms
occur relatively early in the visual system. The novel
suggestion in this model is the pair-wise spatially
extended gain control on lateral interactions. Because
the spatial weighting function for brightness induction
falls off steeply as a function of distance from the test
(Zaidi et al., 1992), these pair-wise connections only
have to straddle fairly short distances in retinal or cortical
coordinates.

An alternative to this spatially extended gain control
could be a static compressive non-linearity on these pair-
wise connections. However, the predictions from a static
non-linearity depart significantly from the straight lines
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required to fit the data from Experiments 1 and 2. The
pair-wise gain control also makes different predictions
than a pair-wise static non-linearity if the binary texture
in Experiment 3 is replaced by dynamic random noise of
the sort used by Chubb et al. (1989) to measure contrast-
contrast. For a contrast modulated dynamic random noise
surround, the time-averaged mean luminance is equal for
all points in the surround, therefore, the gain control
model predicts a marked reduction in brightness induc-
tion, whereas the static non-linearity predicts an induc-
tion level equal to that measured by Experiment 3.
Measurements made by observer BS were in agreement
with the predictions of the gain control mechanism.

Contrast-contrast has also been studied with spatially
static noise patterns (Singer & D’Zmura, 1995; DeBonet
& Zaidi, 1996). If the test disk in Fig. 1 was filled with
spatially static noise of the same grain as the surround,
then modulation of the contrast of the surround as in Fig.
8, would induce contrast modulation in the test. Our
model incorporates point-by-point lateral interactions,
and can be used to predict the brightness modulation
induced into each element of the test. The model predicts
that the brightness modulations induced into the lighter
and darker elements of the test will be in opposite phase
to the luminance modulations of the lighter and darker
elements of the surround, respectively. Since the two
luminance modulations are in opposite phase to one
another, the induced modulations will also be in opposite
phase, and the contrast inside the test will be seen to
modulate in opposite phase to the surround. For our
observers, the predicted amplitude of induced contrast-
contrast was somewhat less than the measured amounts,
indicating that in static noise patterns, induced brightness
and induced contrast both play a role. It is clearly
preferable to use dynamic random noise when studying
the properties of contrast-contrast.

The time-varying methodology used in these experi-
ments has enabled us to separate linear spatial summation
from other effects due to luminance adaptation mechan-
isms. However, there is an important limitation to this
methodology: the model predicts both time-varying and
steady-state induction, but we were able only to measure
time-varying induced effects. To judge how well our
model would predict perceived gray levels in a static
display, we used the demonstration shown in Fig. 13. The
demonstration consists of three vertical surround seg-
ments of random binary texture with equal spatially
averaged luminance and with spatial contrast progres-
sively decreasing from left to right with values of 1.0, 0.3,
and 0.0. Centered in each of the surround segments, there
are five spatially uniform diamonds with luminance
decreasing from the top to bottom. Diamonds across each
row have identical luminance yet do not appear identical.
Most observers see the diamonds as increasing in
lightness from left to right in the top rows, and from
right to left in the bottom rows. The relative rank of
brightness for diamonds in each row can be predicted on
the basis of the gain controls and linear summation
embodied in this model. The induced brightness can then
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be added to the gain controlled physical luminance to
generate a relative perceived gray level for each
diamond. In the static case, our model predicts the
perceived gray-level to be proportional to:

Ic-C+1 (10)

where C is the luminance level of the test, I'¢ is given by
equation (7) and I, which is constant for all ¢, is given by
equation (6). Using the parameters estimated for
observers JS and BS, we generated these predictions.
The predicted rankings differed somewhat between
observers, yet agreed almost perfectly with the actual
rankings made by each observer (Zaidi et al., 1995).

The success of the present model shows that in
complex non-figural achromatic configurations, the
perceived gray levels can be predicted by incorporating
the effects of local and spatially extended adaptation
mechanisms, and linear summation of the induced effects
of individual elements of the surround. Even in config-
urations that allow figural interpretations, this model can
be used to predict the effect of the non-figural gray-level
variations. The effect of figural interpretations can then
be isolated as departures from these predictions and
studied independently.
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